

ZonOpSchool: Empowering Communities through Renewable Energy

A Case Study of Solar Energy Integration in Education and Community Development

Presented by: ECREC

What is ZonOpSchool?

Introduction

• A Netherlands-based initiative combining solar energy production, education, and community participation.

• Aims to reduce energy costs, carbon emissions, and foster sustainability awareness.

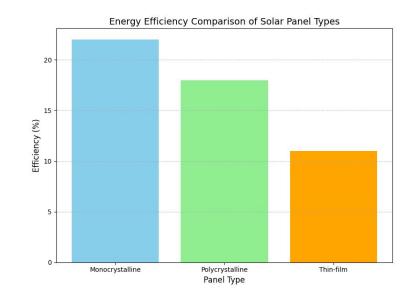
Key Objectives

Goals of ZonOpSchool:

 Utilize school rooftops for solar energy production.

• Engage communities through shared ownership models.

Educate students on sustainability.



Solar Panel Technology

Technical Specifications:

- Monocrystalline silicon panels with 22% efficiency.
- Capacity per school:50-250 kWp.
- Real-time IoT monitoring systems.

Energy Output

- Annual Energy Production:
- Typical installation of 100 kWp generates ~85,000 kWh/year.
- Distribution: 70% consumed by schools, 30% fed into the grid.

Installation Process

Step-by-Step Implementation:

Feasibility studies and structural assessments.

2. System design and rooftop optimization.

3. Installation and grid integration.

Community Engagement Overview

The Core of ZonOpSchool:

- Shared ownership empowers residents to invest in renewable energy.
- Transparent financial and operational reporting builds trust.

How It Works:

Community Investment Model

• Residents buy shares ranging from €50-€500.

• Annual dividends: 4-6% return on investment.

Funds are reinvested into community projects

Community & Social Benefits

Direct and Indirect Advantages:

- Lower energy costs for schools (€5,000-€15,000 annually).
- Dividends reinvested in local infrastructure like libraries and playgrounds.
- Greater social equity through prioritization of low-income areas.

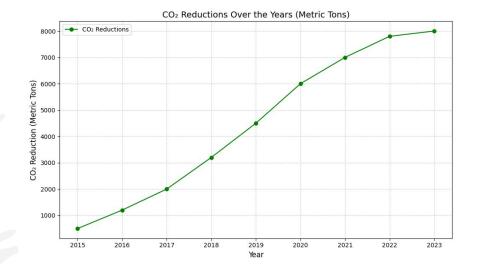
Social Impact:

- Energy savings funded new educational programs, including coding workshops and environmental science projects.
- Low-income families near the schools benefited from reduced energy costs.

Educational Integration

Empowering the Next Generation:

- Interactive learning tools displaying real-time energy data.
- Curriculum integration: Renewable energy workshops and science projects.
- Case Study: Haarlem schools saw increased student engagement in sustainability programs.

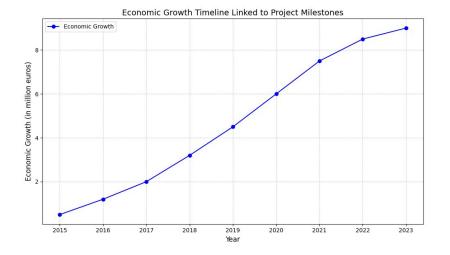


Environmental Impact

Carbon Emission Reduction:

- Each 100 kWp system offsets 40 metric tons of CO₂ annually.
- Total impact across all installations: ~8,000 metric tons/year.

Economic Impact



Driving Local Economies:

 Revenue from energy sales reinvested in the community.

 Over 300 jobs created in installation, maintenance, and management.

Challenges - Community Engagement

Obstacles Faced:

- Initial skepticism about financial risks.
- Concerns about aesthetic impact on school building

Solutions:

- Transparent communication and regular updates.
- Highlighting financial and environmental benefits.

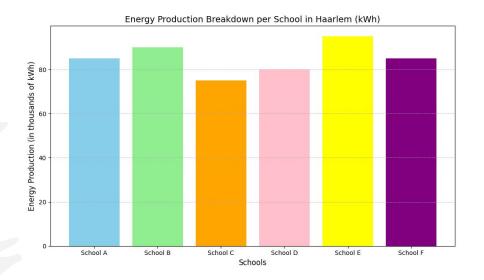
Challenges – Technical Issues

Barriers in Implementation:

- Structural limitations of older school buildings.
- Variability in energy storage options for non-school hours.

Solutions:

- Lightweight panels and advanced mounting systems.
- Exploring battery storage for surplus energy.



Case Study: Haarlem

Key Achievements:

- 6 schools outfitted with solar panels.
- 510,000 kWh/year produced, powering 170 households.
- Over 500 community investors.

Policy Support

Key to Success:

- Government subsidies covering 30% of costs.
- Stable feed-in tariffs encourage community participation.

Potential for Expansion:

Global Scalability

• Cooperative model adaptable to other regions.

• Knowledge sharing through international partnerships.

Future Goals

By 2030:

• Expand to 1,000 schools nationwide.

 Add 200 MW of solar capacity.

Innovations

Exploring New Technologies:

- Bifacial panels to maximize sunlight capture.
- Battery storage for surplus energy utilization.

Key Metrics:

Community Impact Highlights

• 85% of surveyed residents report increased trust in local renewable initiatives.

• Students' awareness of sustainability increased by 75%.

Lessons Learned

Conclusion

Takeaways:

- ZonOpSchool integrates technology, education, and community collaboration effectively.
- A scalable, impactful model for global renewable energy efforts.

Thank You

PROJECT CODE: 01147083-POWERINGCITIZENS-CERV-2023-CITIZENS-CIV

DURATION: 01/06/2024 to 30/05/2026

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

